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Abstract

Dense stereo algorithms are able to estimate dispari-
ties at all pixels including untextured regions. Typically
these disparities are evaluated at integer disparity steps. A
subsequent sub-pixel interpolation often fails to propagate
smoothness constraints on a sub-pixel level. The determi-
nation of sub-pixel accurate disparities is an active field of
research, however, most sub-pixel estimation algorithms fo-
cus on textured image areas in order to show their precision.

We propose to increase the sub-pixel accuracy in low-
textured regions in three possible ways: First, we present
an analysis that shows the benefit of evaluating the dispar-
ity space at fractional disparities. Second, we introduce a
new disparity smoothing algorithm that preserves depth dis-
continuities and enforces smoothness on a sub-pixel level.
Third, we present a novel stereo constraint (gravitational
constraint) that assumes sorted disparity values in verti-
cal direction and guides global algorithms to reduce false
matches, especially in low-textured regions. Our goal in this
work is to obtain an accurate 3D reconstruction. Large-
scale 3D reconstruction will benefit heavily from these sub-
pixel refinements, especially with a multi-baseline exten-
sion.

Results based on semi-global matching , obtained with
the above mentioned algorithmic extensions are shown for
the Middlebury stereo ground truth data sets. The presented
improvements, called ImproveSubPix, turn out to be one of
the top-performing algorithms when evaluating the set on a
sub-pixel level while being computationally efficient. Addi-
tional results are presented for urban scenes. The three im-
provements are independent of the underlying type of stereo
algorithm and can also be applied to sparse stereo algo-
rithms.

1. Introduction

Recent work on stereo vision has focused on dense
global algorithms that are able to obtain very accurate re-
sults. For a survey of the current state of the art refer to [13]
and to the Middlebury stereo website that hosts the list of
top-performing stereo algorithms compared to ground truth
data [12].

The applications for dense, accurate disparity estima-
tions are numerous, ranging from view interpolation to 3D
reconstruction. Our main interest lies in obtaining high ac-
curacy disparity images for 3D reconstruction at small dis-
parities, i.e. at large distances. In this paper we present three
improvements for sub-pixel stereo computation, focusing
on low-textured image regions. Textured regions benefit
from the improvements as well. Our scope in this paper is
limited to obtaining accurate 3D reconstructions. 3D Data
storage and view synthesis are not addressed. The 3D re-
sults are shown from perspectives that allow us to assess
the accuracy of the methods - they are not deemed suitable
for view synthesis.

Most stereo algorithms obtain disparities on an integer
level. A simple sub-pixel interpolation can be done via
parabola fitting of the disparities in the vicinity of the best
disparity [19]. There has also been a growing interest in
obtaining accurate sub-pixel disparities since the parabola
fitting approaches exhibit artifacts known as pixel-locking
[15]. These approaches perform a careful interpolation of
the integer disparity results [10] or work on a disparity space
image that is sampled at fractional disparities [17].

How is this paper organized? Section 2 gives an
overview of stereo sub-pixel interpolation techniques. In
Section 3, the technique of sampling the disparity space at
fractional disparity steps is described. The following sec-
tion introduces our novel disparity smoothing algorithm. In
Section 5 a new weak stereo constraint is introduced. Sec-
tion 6 gives detailed results on fractional disparity sampling,
on the disparity smoothing and on our gravitational stereo
constraint. In our evaluation we use ground truth data and
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urban scenes. The final section comprises conclusions and
future work.

2. Related Work
We limit our review to papers addressing sub-pixel esti-

mation of stereo correspondences.
Most dense global algorithms deliver integer disparities.

These disparities can be refined via parabola fitting when a
matching cost is available for adjacent disparities [19]. A
few global algorithms deliver sub-pixel disparity estimates
directly: Belief propagation using an MMSE (minimum
mean squared error) estimator yields sub-pixel disparities
implicitly [18]. In this paper, marginal probabilities per
pixel and disparity step constitute weights resulting in sub-
pixel disparity values. Another recent belief propagation
variant also obtains sub-pixel disparities by fitting surfaces
on small segments [8]. An energy-based formulation of the
disparity estimation problem is presented in [1], which also
results in sub-pixel disparity estimates. There, several ideas
from the optical flow estimation problem were applied to
stereo vision. These algorithms require large computational
resources.

Most other sub-pixel algorithms get their integer dispar-
ity values with a correlation-based stereo method (e.g. [13])
and perform a refinement subsequently. Psarakis et al. [11]
conduct a linear interpolation of adjacent correlation values
and solve a one-dimensional optimization problem. Nehab
et al. [10] observe a bias in stereo matching due to the use of
typically the left image as the reference image. Nehab et al.
treat both images symmetrically and a two-dimensional fit
in the disparity space yields accurate sub-pixel disparities.
Stein et al. [16] take the integer disparities and perform
a gradient-descent in the spirit of [9]. All three methods
present results free of the pixel-locking effect. The com-
putational burden of these methods is quite low, especially
Psarakis method. A fast method to remedy the pixel-locking
effect is also presented by Shimizu [15]. There, the integer
correlation values are resampled shifted by a half pixel and
both results are averaged. The result exhibits a slight lock-
ing to integer and to half pixel values. All these methods
rely on sufficient structure to successfully correlate image
patches.

A rigorous analysis of the sub-pixel effects in stereo
matching by Scharstein and Szeliski has been conducted
in [17]. There, a Fourier analysis shows that using a sinc
interpolator is in theory the best interpolation to evaluate
the disparity space image at fractional disparities. Chen [4]
comes to the same conclusion in the context of optical flow
estimation.

The analysis of [17] neglected effects of the sensor ge-
ometry, especially the pixel fill ratio. When approaching
such accuracies the physical layout of the camera becomes
relevant. An investigation of the effect of sensor geome-

try on correspondence measurements is presented in [20].
This analysis gets even more complicated considering re-
cent trends using micro-lenses on every pixel which gives a
complicated photo-sensitivity distribution for every pixel.

We are interested in obtaining accurate sub-pixel esti-
mates for all pixels in the scene, including areas of low or no
texture, at little computational expense. We implemented
several of the above sub-pixel algorithms, confirmed their
accuracy provided sufficient structure, however, obtained
high disparity noise in low-textured areas. This is due to
the fact that the correlation values or other similarity costs
do not have sufficient information in low-textured regions.
Such areas can only be filled with meaningful disparities
using global algorithms with smoothness constraints. One
method that performs disparity smoothing similar to our
algorithm is introduced in [21]. There, bilateral filtering
(adaptive filter coefficients depending on adjacency and on
photoconsistency to the central pixel) is applied to obtain an
improved disparity map, resulting in depth-discontinuity-
preserving smoothing. This non-iterative method yields ex-
cellent results but is computationally quite expensive.

Besides smoothness, the epipolar constraint and the or-
dering constraint are known to be helpful in establishing
stereo correspondences[13]. We propose another helpful
constraint for low-textured regions which we call the grav-
itational constraint introduced in Section 5. It develops its
full potential in outdoor scenes.

2.1. Semi-Global Matching
One of the many dense stereo algorithms listed on the

Middlebury web page is semi-global matching (SGM) [5].
Our investigations are conducted with this algorithm due
to its computational efficiency. Among the top performing
algorithms, Hirschmueller’s SGM is the fastest.

Roughly speaking, SGM performs an energy minimiza-
tion in a dynamic-programming fashion on multiple (8 or
16) 1D paths approximating the 2D image. The energy
consists of three parts: a data term for photo-consistency,
a small smoothness energy term for slanted surfaces that
change the disparity slightly (parameter P1), and a smooth-
ness energy term for depth discontinuities (parameter P2).

SGM is computationally efficient and has been used very
successfully in aerial image 3D reconstruction. The algo-
rithm has a real-time potential on pipe-line architectures
such as graphic cards (GPU) or field-programmable gate-
arrays (FPGA) and processes VGA image pairs in few sec-
onds on standard CPUs.

A multi-baseline extension of SGM is straightforward
and described in [5]. Instead of working on rectified im-
ages one walks along slanted epipolar lines of the undis-
torted image which can be done for all match images with
one reference image. The resulting disparity map results are
combined with a median filter. The algorithms described



below can be combined for a multi-baseline application in
the same way, allowing large-scale reconstructions.

3. Sampling the Disparity at Fractional Dispar-
ities

As shown by Szeliski et al. [17], the sinc interpolator is
the best interpolation to sample the disparity space. For im-
age areas with sufficient texture this results in excellent sub-
pixel disparities. However, in real images, a good portion
of the image consists of low-textured or untextured areas.
Due to noise, these areas do not benefit from this interpola-
tion strategy but need support from a smoothness constraint.
When working on discrete disparity steps, the number of
subdivisions of one disparity step is the dominant factor for
improvement in low-textured areas. We extend the anal-
ysis from [17] and perform an evaluation of the disparity
steps at integer pixel, at half pixel and at quarter pixel level,
considering the full image including low-textured regions.
Using semi-global matching we present results that show
a significant improvement in stereo accuracy for fractional
disparity sampling. These results can be extended to any
global stereo algorithm that incorporates smoothness con-
straints provided sufficient available memory.

The evaluation of the disparity space at fractional dis-
parities is straightforward, we only need to interpolate our
matching costs. Then, the original SGM algorithm is ap-
plied using the cost matrix with the disparity dimension in-
creased by the sampling factor 1,2,or 4. We consider two
similarity metrics: the Birchfield-Tomasi (BT) metric [3],
and pixel-wise mutual information [7].

Taking the BT similarity metric as described in [3], we
obtain the interpolated BT values at half pixel resolution by
interpolating the grayvalues of the left and right image and
then compute the BT metric with the interpolated values.
In our investigations with ground truth data, we obtained a
slight performance gain when evaluating BT with interpo-
lated half-pixel values. When evaluating the disparity space
at quarter pixel resolution, we interpolate the grayvalues lin-
early and compute the BT matching costs with interpolated
half-pixel values.

For pixel-wise mutual information, which is in essence
a lookup table, we implement a linear interpolation of the
grayvalues in the match image. In Section 6 we show
an analysis of the different sampling steps. Notice that the
increase in computation time is linear with the number of
(fractional) disparities to check.

4. Disparity Smoothing
Our second technique for improving the sub-pixel accu-

racy is based on the smoothness constraint. This constraint
is widely used to obtain good disparity estimates but often
on a pixel level only. All commonly used local interpolation

schemes neglect this constraint while estimating depth with
sub-pixel accuracy. Imagine a house at 50m distance and a
stereo rig that yields a disparity of 5 pixels. An uncertainty
of ±1

4px then corresponds to an uncertainty of ± 2.5m in
depth. Obviously, such a reconstruction is not very likely to
be accurate.

Our approach performs a depth-edge-preserving smooth-
ing on the disparity image, similar to [21] where bilateral
filtering was used. Bilateral filtering and adaptive smooth-
ing are closely related to each other as shown in [2]. Our
approach is similar to adaptive smoothing, however, unlike
other methods we also exploit the confidence of an estab-
lished disparity value.

We treat the disparity estimation as an energy minimiza-
tion problem similar to [1] with:

Etot =
X
x,y

(Edata(x, y) + λEsmooth(x, y)). (1)

Let d0 be the disparity of the central pixel of a given
small patch. The empirical local disparity variance,

Esmooth(d0) =
1

N − 1
N−1X
i=0

(di − d)2 = σ2(d0), (2)

is used as a smoothness energy contribution of each pixel.
N is the number of pixels within the considered patch and
d its the average disparity. The smoothness energy of d0
becomes minimal for d0 = d.

How can an appropriate data term be formulated? Let
dint be the integer disparity computed by a stereo algorithm
of your choice. The standard parabolic fit delivers not only
an improved estimate dsub, but also the curvature a of the
parabola. The curvature is small in low-textured regions,
whereas it is large in textured regions. If we define the data
term according to

Edata(d0) = a(d0 − dsub)
2, (3)

the cost of choosing d0 unequal to the locally estimated dsub
depends on the confidence of the fit. One could also in-
corporate the image gradient or the grayvalue variance as a
confidence measure of the stereo fit.

It is easy to compute the best solution d0 for a certain
image point. Partial derivation ∂Etot/∂d0 = 0 yields

d0 =
adsub +

λ
N d

a+ λ
N

. (4)

The higher that λ is chosen, the smoother is the resulting
disparity image. Applying Equation 4 to the disparity im-
age favors smooth reconstructions everywhere and ignores



the fact that the disparities can be discontinuous at object
boundaries. Therefore, we modify Equation 2 according to

Esmooth = σ2norm arctan(
σ2(d0)

σ2norm
), (5)

where σnorm denotes the expected variance due to noise. In
areas with small disparity variances (σ¿ σnorm), the char-
acteristic remains unchanged, whereas at disparity edges the
slope of the function is small. That means that a change of
d0 has only little effect on the total energy, thus switching
off the smoothing at disparity discontinuities.

Thanks to the easy derivative of the arctan function, the
optimal d0 becomes:

d0 =
adsub +Hd

a+H
with H =

λ

N

1

1 + (σ/σnorm)4
. (6)

H expresses the homogeneity (approaching 0 for depth dis-
continuities, 1 for homogeneous areas) of the disparity val-
ues in the considered patch. λ is constant and gives equal
weight to all disparities. For 3D reconstructions at varying
distances, we to set λ(dsub) = λ

dsub
since this causes equal

smoothing in Euclidean space for all distance ranges.
The above equations are applied to small patches within

the disparity image. In order to get close to the optimal
solution of the above stated problem, we need to iterate
Equation 6 to propagate the updated disparity values. dsub
remains the original value of the input disparity image,
whereas d0 is updated in every iteration.

This disparity smoothing algorithm favors solutions that
are planar in 3D, i.e. fronto-parallel or slanted planes. This
way, the algorithm is especially helpful for reconstructing
buildings.

See Section 6.2 for results of this disparity smoothing
algorithm.

5. Gravitational Constraint
In Figure 1 an urban scene is shown where the sky yields

some erroneous correspondences due to matching ambigu-
ities. For cameras where the optical axes point to the hori-
zon, the following observation is made: When traversing
the image from the bottom to the top, the distance to the 3D
points on the rays tend to increase (see Figure 2). This is
due to the fact that objects in the scene are connected to the
ground (due to gravity, therefore we refer to the constraint
as gravitational constraint). Summarized, we assume sorted
depths for every column in the image. If the optical axes and
the ground have a small angle, the constraint is still valid for
most scenes. The constraint is absolutely useless for scenes
viewed from the bird’s eye perspective.

Even for the scenario with the optical axes parallel to
the ground, scene elements who violate the constraint can

Figure 1. Street scene with traffic sign - left image shown on the
top left, right image on the top right. The disparity image using
SGM with BT is shown at the bottom left, the bottom right im-
age shows the result with gravitational constraint. Note the wrong
depth estimation in the sky on the left. Dark green marks un-
matched areas.

Figure 2. Principle of the Gravitational Constraint.

easily be found: Traffic signs, bridges, or ceilings in in-
door environments. So, this can only be incorporated as
a weak constraint to disambiguate matches in low-textured
areas similar to the smoothness constraint.

For semi-global matching this constraint is easy to apply
since the algorithm works on multiple 1D paths. For the
bottom-up path the original cost accumulation of (see [5],
Equation 12)

L0r(p, d) = C(p, d) + min(L0r(p− r, d), L0r(p− r, d− 1)
+P1, L

0
r(p− r, d+ 1) + P1,min

i
L0r(p− r, i) + P2) (7)



is modified to the following term:

if dbest + 1 ≥ d :

L0r(p, d) = C(p, d) +min(L0r(p− r, d), L0r(p− r, d− 1)
+PG1, L

0
r(p− r, d+ 1) + P1,min

i
L0r(p− r, i) + P2)

else : (8)
L0r(p, d) = C(p, d) +min(L0r(p− r, d), L0r(p− r, d− 1)
+PG1, L

0
r(p− r, d+ 1) + P1,min

i
L0r(p− r, i) + PG2),

with PGi = PG · Pi. L0r represents a possible path
(L00..L015), r is the previous pixel to p along the path, dbest is
the disparity position of the lowest cost from the previously
visited pixel, PG > 1 is the penalty factor for violating the
gravitational constraint. The top-down path is modified in
the same way. All other paths keep their original shape of
Equation 7. In Section 6.3 we show the effect of this con-
straint compared to ground truth data and on urban scenes.

6. Results
6.1. Results for Fractional Disparity Sampling

(FDS)

The benefit of evaluating the disparity space at fractional
disparities is shown in Table 1. The parameters P1 and
P2 of Equation 7 were kept constant at 10 and 20, respec-
tively. Adaptive P2 and hierarchical mutual information as
explained in [5] was used. Discontinuity preserving interpo-
lation as explained in [6] was applied in the post-processing
step. The remaining disparities are filled with the dispari-
ties from the neighbors to the left or right, so no intelligent
extrapolation is performed.

The computation time for Cones and Teddy is less than
7s for the quarter pixel resolution. We count all pixels ex-
ceeding 0.5px from ground truth as error for the remainder
of the paper. The RMS is computed based on all pixels, so
a high value occurs due to a few mismatched pixels, but the
reduction due to sub-sub-pixel estimation (parabola inter-
polation and fractional disparity evaluation) can clearly be
seen. Excluding outliers in the RMS computation has the
problem that the number of outliers change. The RMS at
quarter pixel accuracy slightly degrades for the Cones and
Teddy set which could be accounted for the ground truth
being accurate to a quarter pixel only [14].

The evaluation of the disparity space at fractional dis-
parities is especially beneficial at large distances where one
disparity step corresponds to several meters in 3D. One ex-
ample is shown in Figure 3 and 4.

One can see clearly that the rear of the truck is excel-
lently reconstructed for the quarter pixel case. This accu-
racy gain in stereo facilitates a subsequent 3D analysis to
detect objects. The separation of two objects at similar dis-
tances becomes much easier.

FDS 1px 0.5px 0.25px
% err RMS % err RMS % err RMS

Tsu 23.72 1.117 20.30 0.966 14.99 0.919
Ven 10.80 0.643 8.60 0.502 8.17 0.330
Ted 23.71 8.782 21.16 8.731 19.96 9.674
Con 15.04 5.194 12.98 4.861 12.57 5.302

Table 1. Error percentages and RMS (in px2) for stereo ground
truth data sets. The results get better with higher fractional dis-
parity sampling (FDS). Tsu=Tsukuba, Ven=Venus, Ted=Teddy,
Con=Cones image pair.

Figure 3. Van scene (rectified left image shown on the left) and
corresponding disparity scene (right). Here, SGM with BT is used.
The cameras deliver 12 bits per pixel and have a 55cm baseline
with a 26◦ field of view. Dark green marks unmatched areas.

Figure 4. 3D reconstruction of the rear of the van from the previ-
ous figure viewed from the bird’s eye view. We used pixel dispar-
ity sampling at the top and quarter pixel sampling at the bottom
image. The result with fractional disparity sampling exhibits sig-
nificantly less noise. The van has a perfectly planar rear.

6.2. Disparity Smoothing Results
In Table 2 the RMS and error percentages for the dispar-

ity smoothing algorithm is shown on the stereo ground truth



FDS 1px 0.5px 0.25px
% err RMS % err RMS % err RMS

Tsu 22.82 1.083 19.87 0.943 15.75 0.857
Ven 10.21 0.413 8.46 0.342 8.70 0.328
Ted 24.17 7.701 21.97 7.183 22.17 7.046
Con 15.74 4.912 13.86 4.334 14.78 4.596

Table 2. Error percentages and RMS (in px2) for stereo ground
truth data sets. The RMS results are better with disparity smooth-
ing compared to Table 1.

data set. The RMS decreases for all image and sampling
configurations compared to Table 1 while the error percent-
age occasionally increases. We use parameters λ = 50000,
σnorm = 0.01, a mask size of 3x3 and 10 iterations for the
disparity smoothing. The computation time is 130ms for
the Cones images.

The benefit of disparity smoothing becomes obvious
when looking at slanted surfaces. We investigated a part
of the Venus stereo pair where an accuracy of 1/8 pixel is
available. Taking the lower right image portion of the Venus
image pair, we observe an improvement from 7% false pix-
els to 4% and an RMS drop from 0.080 to 0.057 px2.

Figure 5 shows a 3D reconstruction of the van rear shown
in Figure 3. The rear is reconstructed to an almost pla-
nar surface keeping smoothing artifacts minimal in the sur-
rounding street or sky.

Figure 5. 3D reconstruction of the van rear shown above viewed
from the bird’s eye perspective. Disparity smoothing yields an
almost planar surface. A video of the three presented 3D recon-
structions can be found in the supplementary material.

In Figure 6 a facade reconstruction using this algorithm
is shown. The walls appear very planar and the two walls
meet at a 90◦ angle. Note the clean separation between the
staircase and the wall. The eaves gutter on the right wall is
also well preserved in its shape.

6.3. Gravitational Constraint Results

Table 3 shows the performance gain when applying the
gravitational constraint to the ground truth data set. Here we
did not apply the parabola interpolation and used a penalty
factor of PG = 3.

Figure 6. Top: Left image of an image pair viewing a building at
12m distance. Bottom: 3D reconstruction of the building viewed
from the bird’s eye perspective. Disparity smoothing yields almost
planar building surfaces. The cameras deliver 12 bits per pixel and
have a 55cm baseline with a 26◦ field of view.

FDS 0.25px 0.25px + Gravitation
% err RMS % err RMS

Tsu 7.83 0.9203 7.66 0.9682
Ven 7.35 0.3493 6.64 0.3115
Ted 17.54 9.0838 17.43 7.1768
Con 10.76 4.9547 10.42 4.3229

Table 3. Comparison of error percentages and RMS (in px2) of
stereo ground truth data. Incorporating the gravitational constraint
yields consistently better results.

At time of publication our algorithm using the gravita-
tional constraint and fractional sampling, ImproveSubPix,
was among the top-performing stereo algorithms on sub-
pixel level [12], being best for the Cones image pair. The
improved SGM by Hirschmueller ([6] performs similarly,
but uses several additional post-processing steps. )This
evaluation is based on a ground truth accuracy of a quar-
ter pixel or better.

The gravitational constraint is very helpful in urban
scenes to disambiguate matches in low-textured areas, such
as the street and the sky. One example is shown in Figure 1.
The original SGM result produces wrong matches in the sky
(BT metric was used). These mismatches can be corrected
with the gravitational constraint. Often, such wrong estima-
tions are removed by the right-left consistency check [5],
which is performed here. Note that the traffic sign at the



right side is still correctly measured although it violates the
gravitational constraint. The computational overhead incor-
porating this constraint is negligible.

7. Conclusions and Future Work
Summarizing, we have shown three ways to improve

sub-pixel stereo computation:

• Evaluate the disparity space image at fractional dispar-
ities.

• Apply the disparity smoothing algorithm to obtain a
spatial connection between adjacent pixels on a sub-
pixel level.

• Exploit the gravitational constraint if the camera setup
is designed that way.

All three improvements can be combined independently
of each other. To save computation time, it might be ap-
pealing to use the disparity smoothing algorithm without
fractional disparity sampling. The gravitational constraint is
especially helpful to disambiguate matches in low-textured
areas. In addition, these improvements are independent of
the choice of stereo algorithm. For stereo algorithms ex-
ploiting constraints only along the epipolar line, it might
be beneficial to incorporate the gravitational constraint and
disparity smoothing to obtain a vertical coupling.

For multi-baseline matching, the same improvements
shown for two-view stereo are expected.

Finally, looking at our evaluation against ground truth,
it becomes obvious that more accurate ground truth data
would be extremely valuable to further push the limits of
stereo accuracy.
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